Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Viruses ; 15(3)2023 03 05.
Article in English | MEDLINE | ID: covidwho-2287153

ABSTRACT

Almost all published rooting and dating studies on SARS-CoV-2 assumed that (1) evolutionary rate does not change over time although different lineages can have different evolutionary rates (uncorrelated relaxed clock), and (2) a zoonotic transmission occurred in Wuhan and the culprit was immediately captured, so that only the SARS-CoV-2 genomes obtained in 2019 and the first few months of 2020 (resulting from the first wave of the global expansion from Wuhan) are sufficient for dating the common ancestor. Empirical data contradict the first assumption. The second assumption is not warranted because mounting evidence suggests the presence of early SARS-CoV-2 lineages cocirculating with the Wuhan strains. Large trees with SARS-CoV-2 genomes beyond the first few months are needed to increase the likelihood of finding SARS-CoV-2 lineages that might have originated at the same time as (or even before) those early Wuhan strains. I extended a previously published rapid rooting method to model evolutionary rate as a linear function instead of a constant. This substantially improves the dating of the common ancestor of sampled SARS-CoV-2 genomes. Based on two large trees with 83,688 and 970,777 high-quality and full-length SARS-CoV-2 genomes that contain complete sample collection dates, the common ancestor was dated to 12 June 2019 and 7 July 2019 with the two trees, respectively. The two data sets would give dramatically different or even absurd estimates if the rate was treated as a constant. The large trees were also crucial for overcoming the high rate-heterogeneity among different viral lineages. The improved method was implemented in the software TRAD.


Subject(s)
COVID-19 , SARS-CoV-2 , SARS-CoV-2/genetics , Trees , Phylogeny , Evolution, Molecular
2.
Front Microbiol ; 14: 1136386, 2023.
Article in English | MEDLINE | ID: covidwho-2282983

ABSTRACT

Introduction: Coronavirus disease 2019 is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Influential variants and mutants of this virus continue to emerge, and more effective virus-related information is urgently required for identifying and predicting new mutants. According to earlier reports, synonymous substitutions were considered phenotypically silent; thus, such mutations were frequently ignored in studies of viral mutations because they did not directly cause amino acid changes. However, recent studies have shown that synonymous substitutions are not completely silent, and their patterns and potential functional correlations should thus be delineated for better control of the pandemic. Methods: In this study, we estimated the synonymous evolutionary rate (SER) across the SARS-CoV-2 genome and used it to infer the relationship between the viral RNA and host protein. We also assessed the patterns of characteristic mutations found in different viral lineages. Results: We found that the SER varies across the genome and that the variation is primarily influenced by codon-related factors. Moreover, the conserved motifs identified based on the SER were found to be related to host RNA transport and regulation. Importantly, the majority of the existing fixed-characteristic mutations for five important virus lineages (Alpha, Beta, Gamma, Delta, and Omicron) were significantly enriched in partially constrained regions. Discussion: Taken together, our results provide unique information on the evolutionary and functional dynamics of SARS-CoV-2 based on synonymous mutations and offer potentially useful information for better control of the SARS-CoV-2 pandemic.

3.
Virus Evol ; 9(1): vead002, 2023.
Article in English | MEDLINE | ID: covidwho-2234493

ABSTRACT

To investigate genetic signatures of adaptation to the mink host, we characterised the evolutionary rate heterogeneity in mink-associated severe acute respiratory syndrome coronaviruses (SARS-CoV-2). In 2020, the first detected anthropozoonotic spillover event of SARS-CoV-2 occurred in mink farms throughout Europe and North America. Both spill-back of mink-associated lineages into the human population and the spread into the surrounding wildlife were reported, highlighting the potential formation of a zoonotic reservoir. Our findings suggest that the evolutionary rate of SARS-CoV-2 underwent an episodic increase upon introduction into the mink host before returning to the normal range observed in humans. Furthermore, SARS-CoV-2 lineages could have circulated in the mink population for a month before detection, and during this period, evolutionary rate estimates were between 3 × 10-3 and 1.05 × 10-2 (95 per cent HPD, with a mean rate of 6.59 × 10-3) a four- to thirteen-fold increase compared to that in humans. As there is evidence for unique mutational patterns within mink-associated lineages, we explored the emergence of four mink-specific Spike protein amino acid substitutions Y453F, S1147L, F486L, and Q314K. We found that mutation Y453F emerged early in multiple mink outbreaks and that mutations F486L and Q314K may co-occur. We suggest that SARS-CoV-2 undergoes a brief, but considerable, increase in evolutionary rate in response to greater selective pressures during species jumps, which may lead to the occurrence of mink-specific mutations. These findings emphasise the necessity of ongoing surveillance of zoonotic SARS-CoV-2 infections in the future.

4.
Viruses ; 14(12)2022 12 12.
Article in English | MEDLINE | ID: covidwho-2155319

ABSTRACT

The ongoing evolution of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has resulted in the recent emergence of a highly divergent variant of concern (VOC) defined as Omicron or B.1.1.529. This VOC is of particular concern because it has the potential to evade most therapeutic antibodies and has undergone a sustained genetic evolution, resulting in the emergence of five distinct sub-lineages. However, the evolutionary dynamics of the initially identified Omicron BA.1 and BA.2 sub-lineages remain poorly understood. Herein, we combined Bayesian phylogenetic analysis, mutational profiling, and selection pressure analysis to track the virus's genetic changes that drive the early evolutionary dynamics of the Omicron. Based on the Omicron dataset chosen for the improved temporal signals and sampled globally between November 2021 and January 2022, the most recent common ancestor (tMRCA) and substitution rates for BA.1 were estimated to be that of 18 September 2021 (95% highest posterior density (HPD), 4 August-22 October 2021) and 1.435 × 10-3 (95% HPD = 1.021 × 10-3 - 1.869 × 10-3) substitution/site/year, respectively, whereas 3 November 2021 (95% highest posterior density (HPD) 26 September-28 November 2021) and 1.074 × 10-3 (95% HPD = 6.444 × 10-4 - 1.586 × 10-3) substitution/site/year were estimated for the BA.2 sub-lineage. The findings of this study suggest that the Omicron BA.1 and BA.2 sub-lineages originated independently and evolved over time. Furthermore, we identified multiple sites in the spike protein undergoing continued diversifying selection that may alter the neutralization profile of BA.1. This study sheds light on the ongoing global genomic surveillance and Bayesian molecular dating analyses to better understand the evolutionary dynamics of the virus and, as a result, mitigate the impact of emerging variants on public health.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Bayes Theorem , Mutation , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
5.
Virus Res ; 305: 198551, 2021 11.
Article in English | MEDLINE | ID: covidwho-1440397

ABSTRACT

Samples from complete genomes of SARS-CoV-2 isolated during the first wave (December 2019-July 2020) of the global COVID-19 pandemic from 21 countries (Asia, Europe, Middle East and America) around the world, were analyzed using the phylogenetic method with molecular clock dating. Results showed that the first cases of COVID-19 in the human population appeared in the period between July and November 2019 in China. The spread of the virus into other countries of the world began in the autumn of 2019. In mid-February 2020, the virus appeared in all the countries we analyzed. During this time, the global population of SARS-CoV-2 was characterized by low levels of the genetic polymorphism, making it difficult to accurately assess the pathways of infection. The rate of evolution of the coding region of the SARS-CoV-2 genome equal to 7.3 × 10-4 (5.95 × 10-4-8.68 × 10-4) nucleotide substitutions per site per year is comparable to those of other human RNA viruses (Measles morbillivirus, Rubella virus, Enterovirus C). SARS-CoV-2 was separated from its known close relative, the bat coronavirus RaTG13 of the genus Betacoronavirus, approximately 15-43 years ago (the end of the 20th century).


Subject(s)
COVID-19/epidemiology , Evolution, Molecular , Genome, Viral , Mutation Rate , SARS-CoV-2/genetics , Animals , Asia/epidemiology , COVID-19/history , COVID-19/transmission , COVID-19/virology , Chiroptera/virology , Europe/epidemiology , Genomics/methods , History, 20th Century , History, 21st Century , Humans , Middle East/epidemiology , North America/epidemiology , Phylogeny , Polymorphism, Genetic , SARS-CoV-2/classification , SARS-CoV-2/pathogenicity , South America/epidemiology
6.
Genome Biol Evol ; 13(4)2021 04 05.
Article in English | MEDLINE | ID: covidwho-1387877

ABSTRACT

One of the central goals in molecular evolutionary biology is to determine the sources of variation in the rate of sequence evolution among proteins. Gene expression level is widely accepted as the primary determinant of protein evolutionary rate, because it scales with the extent of selective constraints imposed on a protein, leading to the well-known negative correlation between expression level and protein evolutionary rate (the E-R anticorrelation). Selective constraints have been hypothesized to entail the maintenance of protein function, the avoidance of cytotoxicity caused by protein misfolding or nonspecific protein-protein interactions, or both. However, empirical tests evaluating the relative importance of these hypotheses remain scarce, likely due to the nontrivial difficulties in distinguishing the effect of a deleterious mutation on a protein's function versus its cytotoxicity. We realized that examining the sequence evolution of viral proteins could overcome this hurdle. It is because purifying selection against mutations in a viral protein that result in cytotoxicity per se is likely relaxed, whereas purifying selection against mutations that impair viral protein function persists. Multiple analyses of SARS-CoV-2 and nine other virus species revealed a complete absence of any E-R anticorrelation. As a control, the E-R anticorrelation does exist in human endogenous retroviruses where purifying selection against cytotoxicity is present. Taken together, these observations do not support the maintenance of protein function as the main constraint on protein sequence evolution in cellular organisms.


Subject(s)
Endogenous Retroviruses/genetics , Evolution, Molecular , SARS-CoV-2/genetics , Viral Proteins/genetics , Amino Acid Sequence , Animals , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Mutation , Sequence Analysis, RNA
7.
Front Microbiol ; 12: 673855, 2021.
Article in English | MEDLINE | ID: covidwho-1259352

ABSTRACT

Even though the COVID-19 epidemic in China has been successfully put under control within a few months, it is still very important to infer the origin time and genetic diversity from the perspective of the whole genome sequence of its agent, SARS-CoV-2. Yet, the sequence of the entire virus genome from China in the current public database is very unevenly distributed with reference to time and place of collection. In particular, only one sequence was obtained in Henan province, adjacent to China's worst-case province, Hubei Province. Herein, we used high-throughput sequencing techniques to get 19 whole-genome sequences of SARS-CoV-2 from 18 severe patients admitted to the First Affiliated Hospital of Zhengzhou University, a provincial designated hospital for the treatment of severe COVID-19 cases in Henan province. The demographic, baseline, and clinical characteristics of these patients were described. To investigate the molecular epidemiology of SARS-CoV-2 of the current COVID-19 outbreak in China, 729 genome sequences (including 19 sequences from this study) sampled from Mainland China were analyzed with state-of-the-art comprehensive methods, including likelihood-mapping, split network, ML phylogenetic, and Bayesian time-scaled phylogenetic analyses. We estimated that the evolutionary rate and the time to the most recent common ancestor (TMRCA) of SARS-CoV-2 from Mainland China were 9.25 × 10-4 substitutions per site per year (95% BCI: 6.75 × 10-4 to 1.28 × 10-3) and October 1, 2019 (95% BCI: August 22, 2019 to November 6, 2019), respectively. Our results contribute to studying the molecular epidemiology and genetic diversity of SARS-CoV-2 over time in Mainland China.

8.
J Med Virol ; 93(3): 1722-1731, 2021 03.
Article in English | MEDLINE | ID: covidwho-1196497

ABSTRACT

During the first few months of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution in a new host, contrasting hypotheses have been proposed about the way the virus has evolved and diversified worldwide. The aim of this study was to perform a comprehensive evolutionary analysis to describe the human outbreak and the evolutionary rate of different genomic regions of SARS-CoV-2. The molecular evolution in nine genomic regions of SARS-CoV-2 was analyzed using three different approaches: phylogenetic signal assessment, emergence of amino acid substitutions, and Bayesian evolutionary rate estimation in eight successive fortnights since the virus emergence. All observed phylogenetic signals were very low and tree topologies were in agreement with those signals. However, after 4 months of evolution, it was possible to identify regions revealing an incipient viral lineage formation, despite the low phylogenetic signal since fortnight 3. Finally, the SARS-CoV-2 evolutionary rate for regions nsp3 and S, the ones presenting greater variability, was estimated as 1.37 × 10-3 and 2.19 × 10-3 substitution/site/year, respectively. In conclusion, results from this study about the variable diversity of crucial viral regions and determination of the evolutionary rate are consequently decisive to understand essential features of viral emergence. In turn, findings may allow the first-time characterization of the evolutionary rate of S protein, crucial for vaccine development.


Subject(s)
Biological Evolution , Coronavirus Papain-Like Proteases/genetics , Evolution, Molecular , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution/genetics , Animals , COVID-19/pathology , Chiroptera/virology , Genome, Viral/genetics , Humans , Phylogeny
9.
Virus Evol ; 7(1): veab020, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1123371

ABSTRACT

Community protective immunity can affect RNA virus evolution by selecting for new antigenic variants on the scale of years, exemplified by the need of annual evaluation of influenza vaccines. The extent to which this process termed antigenic drift affects coronaviruses remains unknown. Alike the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), seasonal human coronaviruses (HCoV) likely emerged from animal reservoirs as new human pathogens in the past. We therefore analyzed the long-term evolutionary dynamics of the ubiquitous HCoV-229E and HCoV-OC43 in comparison with human influenza A virus (IAV) subtype H3N2. We focus on viral glycoprotein genes that mediate viral entry into cells and are major targets of host neutralizing antibody responses. Maximum likelihood and Bayesian phylogenies of publicly available gene datasets representing about three decades of HCoV and IAV evolution showed that all viruses had similar ladder-like tree shapes compatible with antigenic drift, supported by different tree shape statistics. Evolutionary rates inferred in a Bayesian framework were 6.5 × 10-4 (95% highest posterior density (HPD), 5.4-7.5 × 10-4) substitutions per site per year (s/s/y) for HCoV-229E spike (S) genes and 5.7 × 10-4 (95% HPD, 5-6.5 × 10-4) s/s/y for HCoV-OC43 S genes, which were about fourfold lower than the 2.5 × 10-3 (95% HPD, 2.3-2.7 × 10-3) s/s/y rate for IAV hemagglutinin (HA) genes. Coronavirus S genes accumulated about threefold less (P < 0.001) non-synonymous mutations (dN) over time than IAV HA genes. In both IAV and HCoV, the average rate of dN within the receptor binding domains (RBD) was about fivefold higher (P < 0.0001) than in other glycoprotein gene regions. Similarly, most sites showing evidence for positive selection occurred within the RBD (HCoV-229E, 6/14 sites, P < 0.05; HCoV-OC43, 23/38 sites, P < 0.01; IAV, 13/15 sites, P = 0.08). In sum, the evolutionary dynamics of HCoV and IAV showed several similarities, yet amino acid changes potentially representing antigenic drift occurred on a lower scale in endemic HCoV compared to IAV. It seems likely that pandemic SARS-CoV-2 evolution will bear similarities with IAV evolution including accumulation of adaptive changes in the RBD, requiring vaccines to be updated regularly, whereas higher SARS-CoV-2 evolutionary stability resembling endemic HCoV can be expected in the post-pandemic stage.

10.
Comput Struct Biotechnol J ; 19: 759-766, 2021.
Article in English | MEDLINE | ID: covidwho-1036889

ABSTRACT

The recent emergence of the novel SARS-CoV-2 in China and its rapid spread in the human population has led to a public health crisis worldwide. Like in SARS-CoV, horseshoe bats currently represent the most likely candidate animal source for SARS-CoV-2. Yet, the specific mechanisms of cross-species transmission and adaptation to the human host remain unknown. Here we show that the unsupervised analysis of conservation patterns across the ß-CoV spike protein family, using sequence information alone, can provide valuable insights on the molecular basis of the specificity of ß-CoVs to different host cell receptors. More precisely, our results indicate that host cell receptor usage is encoded in the amino acid sequences of different CoV spike proteins in the form of a set of specificity determining positions (SDPs). Furthermore, by integrating structural data, in silico mutagenesis and coevolution analysis we could elucidate the role of SDPs in mediating ACE2 binding across the Sarbecovirus lineage, either by engaging the receptor through direct intermolecular interactions or by affecting the local environment of the receptor binding motif. Finally, by the analysis of coevolving mutations across a paired MSA we were able to identify key intermolecular contacts occurring at the spike-ACE2 interface. These results show that effective mining of the evolutionary records held in the sequence of the spike protein family can help tracing the molecular mechanisms behind the evolution and host-receptor adaptation of circulating and future novel ß-CoVs.

11.
Virus Res ; 287: 198098, 2020 10 02.
Article in English | MEDLINE | ID: covidwho-653575

ABSTRACT

To investigate the evolutionary and epidemiological dynamics of the current COVID-19 outbreak, a total of 112 genomes of SARS-CoV-2 strains sampled from China and 12 other countries with sampling dates between 24 December 2019 and 9 February 2020 were analyzed. We performed phylogenetic, split network, likelihood-mapping, model comparison, and phylodynamic analyses of the genomes. Based on Bayesian time-scaled phylogenetic analysis with the best-fitting combination models, we estimated the time to the most recent common ancestor (TMRCA) and evolutionary rate of SARS-CoV-2 to be 12 November 2019 (95 % BCI: 11 October 2019 and 09 December 2019) and 9.90 × 10-4 substitutions per site per year (95 % BCI: 6.29 × 10-4-1.35 × 10-3), respectively. Notably, the very low Re estimates of SARS-CoV-2 during the recent sampling period may be the result of the successful control of the pandemic in China due to extreme societal lockdown efforts. Our results emphasize the importance of using phylodynamic analyses to provide insights into the roles of various interventions to limit the spread of SARS-CoV-2 in China and beyond.


Subject(s)
Betacoronavirus/classification , Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Genome, Viral , Genomics , Phylogeny , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , COVID-19 , China/epidemiology , Disease Outbreaks , Evolution, Molecular , Genomics/methods , Humans , Pandemics , SARS-CoV-2
12.
J Med Virol ; 92(6): 602-611, 2020 06.
Article in English | MEDLINE | ID: covidwho-153847

ABSTRACT

To investigate the evolutionary history of the recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China, a total of 70 genomes of virus strains from China and elsewhere with sampling dates between 24 December 2019 and 3 February 2020 were analyzed. To explore the potential intermediate animal host of the SARS-CoV-2 virus, we reanalyzed virome data sets from pangolins and representative SARS-related coronaviruses isolates from bats, with particular attention paid to the spike glycoprotein gene. We performed phylogenetic, split network, transmission network, likelihood-mapping, and comparative analyses of the genomes. Based on Bayesian time-scaled phylogenetic analysis using the tip-dating method, we estimated the time to the most recent common ancestor and evolutionary rate of SARS-CoV-2, which ranged from 22 to 24 November 2019 and 1.19 to 1.31 × 10-3 substitutions per site per year, respectively. Our results also revealed that the BetaCoV/bat/Yunnan/RaTG13/2013 virus was more similar to the SARS-CoV-2 virus than the coronavirus obtained from the two pangolin samples (SRR10168377 and SRR10168378). We also identified a unique peptide (PRRA) insertion in the human SARS-CoV-2 virus, which may be involved in the proteolytic cleavage of the spike protein by cellular proteases, and thus could impact host range and transmissibility. Interestingly, the coronavirus carried by pangolins did not have the RRAR motif. Therefore, we concluded that the human SARS-CoV-2 virus, which is responsible for the recent outbreak of COVID-19, did not come directly from pangolins.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Genome, Viral , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Animals , Betacoronavirus/classification , Betacoronavirus/pathogenicity , COVID-19 , Chiroptera/virology , Coronavirus Infections/virology , Eutheria/virology , Evolution, Molecular , Host Specificity , Humans , Phylogeny , Pneumonia, Viral/virology , SARS-CoV-2 , Sequence Alignment , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/classification , Spike Glycoprotein, Coronavirus/metabolism
13.
J Med Virol ; 92(5): 501-511, 2020 05.
Article in English | MEDLINE | ID: covidwho-10501

ABSTRACT

To investigate the time origin, genetic diversity, and transmission dynamics of the recent 2019-nCoV outbreak in China and beyond, a total of 32 genomes of virus strains sampled from China, Thailand, and the USA with sampling dates between 24 December 2019 and 23 January 2020 were analyzed. Phylogenetic, transmission network, and likelihood-mapping analyses of the genome sequences were performed. On the basis of the likelihood-mapping analysis, the increasing tree-like signals (from 0% to 8.2%, 18.2%, and 25.4%) over time may be indicative of increasing genetic diversity of 2019-nCoV in human hosts. We identified three phylogenetic clusters using the Bayesian inference framework and three transmission clusters using transmission network analysis, with only one cluster identified by both methods using the above genome sequences of 2019-nCoV strains. The estimated mean evolutionary rate for 2019-nCoV ranged from 1.7926 × 10-3 to 1.8266 × 10-3 substitutions per site per year. On the basis of our study, undertaking epidemiological investigations and genomic data surveillance could positively impact public health in terms of guiding prevention efforts to reduce 2019-nCOV transmission in real-time.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/transmission , Coronavirus Infections/virology , Genome, Viral , Pneumonia, Viral/transmission , Bayes Theorem , COVID-19 , China , Coronavirus Infections/epidemiology , Disease Outbreaks , Humans , Likelihood Functions , Models, Genetic , Mutation Rate , Phylogeny , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Thailand , United States
SELECTION OF CITATIONS
SEARCH DETAIL